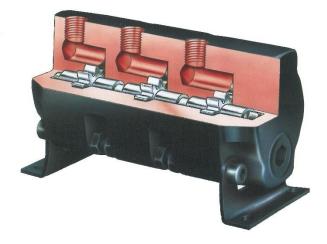


POWER-HYDRAULIK Flow divider

Overview

The hydraulic solution for the supply of several consumers
Perfectly synchronous cylinder operation is guaranteed
Summary of the highlights
Dimensioning5
Product variants and accessories
Typical applications7
Type description
Flow dividers with two equal sub-flows Series 200 PR 10
Flow dividers with two equal sub-flows Series 300 PR11
Flow dividers with two equal sub-flows Series 400 PR 12
Flow dividers with four equal sub-flows Series 200 PR 13
Flow dividers with four equal sub-flows Series 200 PM 14
Flow dividers with four equal sub-flows Series 300 PR15
Flow dividers for several equal or proportional sub-flows Series 200 PM 16
Flow dividers for several equal or proportional sub-flows Series 300 PR 17
High pressure flow dividers for several equal or proportional sub-flows
Pressure relief units - Security in all cases
Pressure relief units, integrated into the pipes
Pressure relief unit – flange-mounted, Series 200 PR – with 2 equal sub flows 21
Pressure relief unit with anti cavitation protection – flange-mounted, Series 200 PR – with 2 equal sub flows
Pressure relief unit – flange-mounted, Series 200 PR – with 4 equal sub flows 23
Pressure relief unit with anti cavitation protection – flange-mounted, Series 200 PR – with 4 equal sub flows
Quick search
Agencies abroad


Flow divider

The hydraulic solution for

the supply of several

consumers

With gear flow dividers from POWER-HYDRAULIK volumetric flow rates of 2 to 400 liters per minute can be split into 2 to max. 12 flows of equal size or into proportional flow rates. The flow divider is used as divider in one direction and combiner in another direction. Their special

design means that, in 90% of applications, there is no need for additional pressure relief valves. Flow dividers can also be used to transmit pressure across individual hydraulic circuits. The design of hydraulic systems can be clearer and more compact when using flow dividers.

Perfectly synchronous cylinder operation is guaranteed

The main field of application for flow dividers involves assuring the synchronous movement of several cylinders or the supply of several consumers. Typical applications include pallet changers where allets are raised and lowered for automatic loading and removal, or Cargo Loaders for raising and lowering a platform. For more application with hydraulic schematic, please see page 7.

Quality at its best:

- High-strength cast housing
- Precision needle bearings
- O-ring seals between the chambers
- Accurately dowelled chambers
- Hardened shafts with hardened round keys and keyways (prevent stress concentration and wear)
- Precisely machined undercuts guarantee constant filling and displacement.
 The flow dividers work smoothly and have a long service life

Summary of the highlights

- 2 12 sub-flows
- Approx. 2 400 l/min (depending on layout)
- Max. 210 bar
- High-pressure series 240 bar at 13-170 l/min
- Low initial pressure and pressure loss
- Pressure relief units can be supplied for each range of flow dividers, also with anticavitation valves
- Approval for use in the automotive industry
- Long service life achieved through use of needle bearings and cast iron housing
- Internal final position equalization
- Easy to integrate in complete systems
- Modifications are possible: Proportional, motor-pump-unit, manifolds can be integrated
- Modular design
- Short delivery lead time due to comprehensive inventory

Dimensioning

Best efficiency and highest precision are achieved if the flow divider is operated in the ideal speed range. Therefore both inlets should be used also in case of devices with several chambers. The outlet volumetric flow rate can be adapted to the requirements by combining any chambers of a series.

The ideal speed range is at 1,500 - 2,500 rpm. Below a speed of 700 - 800 rpm, the division results will be inaccurate. The maximum permissible pressure difference must not be exceeded.

The required inlet pressure for flow dividers is calculated in the following way:

P x Q = p1 x Q1 + p2 x Q2 + pn x Qn + (10-15 bar)

"The product of inlet pressure and volumetric flow rate is equivalent to the sum of the products of subflows and pressures at the respective outlets, plus the pressure loss of 10 - 15 bar in the flow divider".

p= inlet pressureQ= inlet flow ratep1 - pn= outlet pressuresQ1 - Qn= outlet flow rates

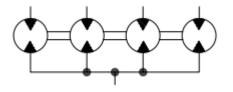
Please note the <u>Einbau- und</u> <u>Betriebshinweise für</u> <u>Zahnradstromteiler und</u> <u>Steuerblöcke!</u>

If you have any questions or differing conditions please contact POWER-HYDRAULIK!

Hydraulic oil

Hydraulic oils up to 500 cSt are used, with an oil cleanliness of 18/16/13 according to ISO 4406.

Division accuracy


The division accuracy of geared flow dividers depends on the following parameters:

- oil viscosity and temperature
- difference in load pressures
- system pressure level
- oil flow to be divided

Division ratio

In the majority of cases a uniform division ratio is required. On request diverse division ratios can be achieved as well. This is possible without problems if different volumes are required within one size.

Symbol of a flow divider

In all control diagrams of POWER-HYDRAULIK, a symbol like the example on the left (4-section) is used for the flow divider. An overflow oil connection is not required.

Product variants and accessories

S-Version for higher pressure

Pressure continuous 210 bar, pressure intermittent 320 bar, max. pressure difference between sections 110 bar. Details can be found under the respective flow divider series. In the S-Version of the high-pressure series a maximum pressure of 240 bar is attainable.

T-Version with increased division accuracy

Compared to the standard design which shows a dividing accuracy of +/- 2.5% (at 1,500 to 2,500 rpm and max. pressure difference between the sections of 20 - 25 bar), the T-Version achieves an accuracy up to +/- 1.5%. The T-Version comprises all features of the S-Version with mounting brackets.

By request with O-Ring-seals made of Viton (FKM)

By default the flow dividers are equipped with NBR (Buna-N) seals.

Complete pressure relief units for retrofitting

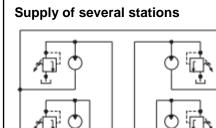
Complete pressure relief units, if required also with anticavitation valves, can be retrofitted on the secondary side. Pressure relief units must be used wherever the maximum permissible pressure is exceeded by pressure intensification.

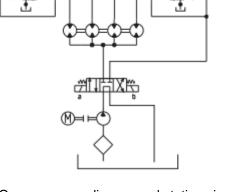
Optional inductive sensor

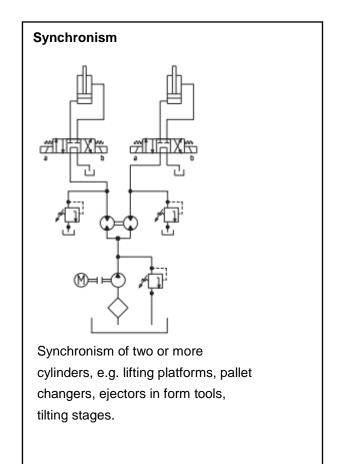
By request, possibility to install an inductive sensor to measure the speed at the flow divider.

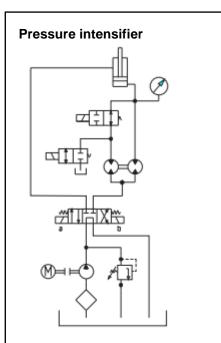
You should provide us with the following information:

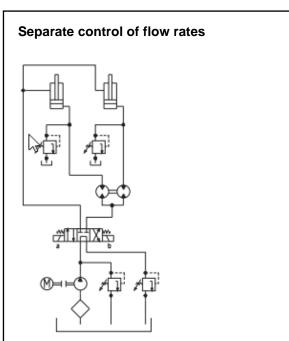
- Control diagram
- Type of application
- Inlet volumetric flow rate
- Equal or proportional division
- Operation or system pressure
- Type of medium
- Type of cylinders
- Location of the application
- Duration of use


We are happy to answer your questions and advise you on the selection of the right flow divider, even in case of deviating conditions.






Typical applications



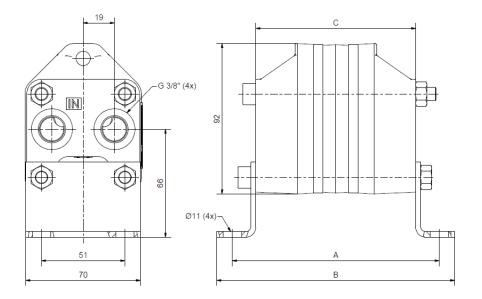
One pump supplies several stations in order to ensure sufficient lubrication: e.g. machines with hydraulic motor drive, tunneling machines, lubrication in coal/bowl mills, coolant distribution in multi-spindle deep-hole drilling machines.

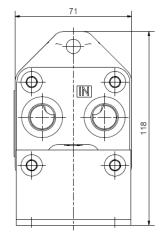
Flow dividers can also be used as pressure intensifiers by relieving one or several outlets to the tank, e.g. in waste presses and other high-/low-pressure designs.

Two or more flow rates are controlled separately at different pressure: presses, machine tools, etc.

Type description

Series 200
 From 2 to 8 sections 7 chamber sizes Max. continuous pressure 110 or 210 bar Equal and proportional flow rate Max. intermittent pressure 320 bar Inlet volumetric flow rate: 2-section devices 2-40 l/min. 8-section devices: max. 160l/min
 Series 300 From 2 to 8 sections 5 chamber sizes Equal and proportional flow rate Max. continuous pressure 105 or 210 bar Max. intermittent pressure 320 bar Inlet volumetric flow rate: 2-section devices: 13-170 l/min 8-section devices: max. 500 l/min
Series 400 2 sections 2 chamber sizes Equal flow rate Max. continuous pressure 105 or 210 bar Max. intermittent pressure 320 bar Inlet volumetric flow rate: 77-380 l/min




Series H/HD
 Series H/HR From 2 to 6 sections 5 chamber sizes Equal and proportional flow rate Max. continuous pressure 240 bar Max. intermittent pressure 420 bar Inlet volumetric flow rate: 2-section devices: 13-170 l/min. 6-section devices: max. 400 l/min With or without integrated pressure relief valves
Pressure relief units - for all series
 Used in case of pressure intensification if the maximum permissible pressure is exceeded Installation into the pipe by default Series 200 PR – 2-section and 4-section also flange-mounted Depending on the version, the aluminum control block is equipped with pressure relief valves, check valves and/or anti-cavitation valves On request, the pressure relief valves are set
 Flow divider with inductive sensor Possibility to install an inductive sensor to measure the speed at the flow divider Further possibilities and solutions on request

Flow dividers with two equal sub-flows Series 200 PR

Variants

- --: standard, without mounting brackets
- A: standard version with mounting brackets
- S: designed for higher pressure without mounting brackets
- B: designed for higher pressure with mounting brackets
- T: designed for higher pressure with mounting brackets and with increased division accuracy

Max. speed: temporary 3500 rpm

model	number of sections	max. inlet flow (dm ³ /min)	displacement per section (cm ³ /rev.)	cont	max. pressure continuous (bar)		max. pressure intermittent (bar)		max. pressure . diff. between sections (bar)		dim. B ⁺⁻² (mm)	dim. C (mm)
				/A	S/B/T	/ A	S/B/T	/A	S/B/T			
PR 202	2	13	1.9	140	210	175	320	175	175	126	145	97.4
PR 204	2	23	3.3	110	210	140	320	110	110	134	154	106.1
PR 207	2	40	5.6	110	210	140	320	110	110	148	168	120.1

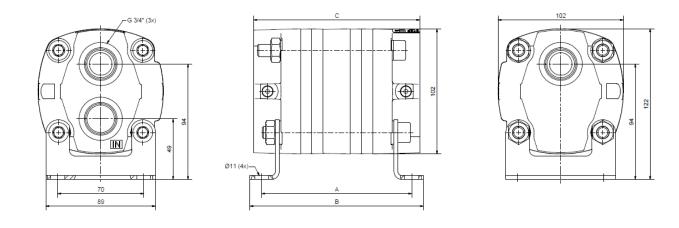
Ordering code:

model - variant

Example :

PR 202 – B

10



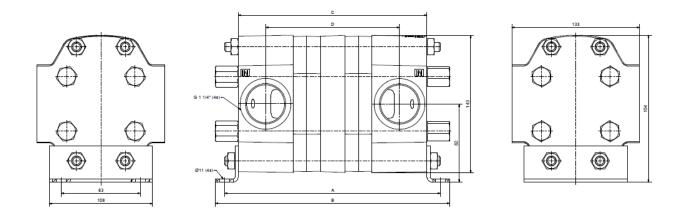
Flow dividers with two equal sub-flows Series 300 PR

Variants

All versions by default with mounting brackets

- --: standard
- S: designed for higher pressure
- T: designed for higher pressure with increased division accuracy

Max. speed: temporary 3500 rpm


model	number of	max. inlet	displacement	max.	max. pressure		max. pressure		max. pressure .		dim.	dim.				
	sections	flow	per section	cont	inuous	intermittent		intermittent		intermittent		diff. k	petween	A +-2	B +-2	С
		(dm ³ /min)	(cm ³ /rev.)	(bar)	(bar)		sections (bar)		(mm)	(mm)	(mm)				
					S/T		S/T		S/T							
PR 307	2	80	11.7	105	210	140	320	70	110	122	141	134.8				
PR 310	2	115	16.4	105	210	140	320	70	110	136	155	149.3				
PR 315	2	170	24.4	105	210	140	320	70	110	161	180	174.2				

Flow dividers with two equal sub-flows Series 400 PR

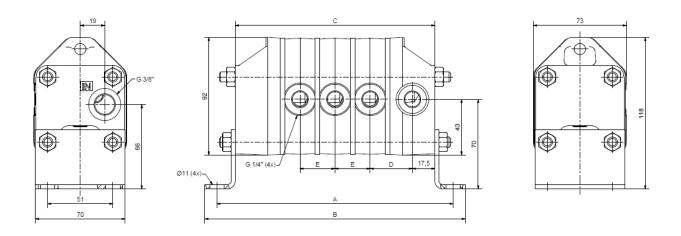
Variants

All versions by default with mounting brackets

- --: standard
- S: designed for higher pressure
- T: designed for higher pressure with increased division accuracy

Max. speed: temporary 3000 rpm

model	number of	max. inlet	displacement	m	ax.	max. p	ressure	max. p	ressure .	dim.	dim.	dim.	dim.
	sections	flow	per section	pressure		intermittent		diff. between		A +-2	B +-2	С	D
		(dm ³ /min)	(cm ³ /rev.)		continuous (bar) (bar)		ar)	sectio	ns (bar)	(mm)	(mm)	(mm)	(mm)
					S/T		S/T		S/T				
PR 411	2	230	38.6	105	210	140	320	70	110	226	245	197	139.8
PR 418	2	380	64.0	105	210	140	320	70	110	264	283	235,1	177.9


Ordering code:	model – variant
Example:	PR 411 - S

Flow dividers with four equal sub-flows Series 200 PR

Variants

- --: standard, without mounting brackets
- A: standard version with mounting brackets
- S: designed for higher pressure without mounting brackets
- B: designed for higher pressure with mounting brackets
- T: designed for higher pressure with mounting brackets and with increased division accuracy

Max. speed: temporary 3500 rpm

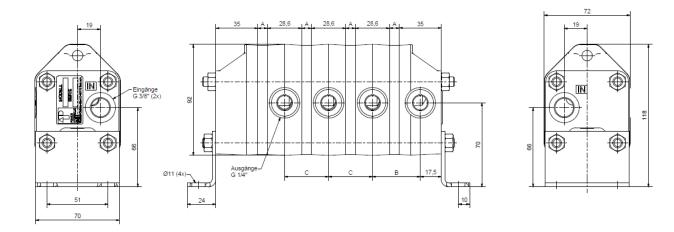
model	number of	max. inlet flow	displacement	max. p	ressure	r	nax.	max. pr	essure .	dim.	dim.	dim.	dim.	dim.
	sections	(dm³/min)	per section	conti	nuous	pre	essure	diff. be	etween	A +-2	B +-2	С	D	Е
			(cm ³ /rev.)	(b	ar)	inte	mittent	section	ns (bar)	(mm)	(mm)	(mm)	(mm)	(mm)
						((bar)							
				/A	S/B/T	/A	S/B/T	/A	S/B/T					
PR 201-59	4	15	1.1	140	210	175	320	175	175	184	204	155.5	32.9	27.4
PR 202-59	4	27	1.9	140	210	175	320	175	175	193	213	164.7	35.2	29.7
PR 204-59	4	46	3.3	110	210	140	320	110	110	211	231	182	39.5	34.0

Ordering code:

model - variant

Example:

e: PR 201-59-B


Flow dividers with four equal sub-flows Series 200 PM

Variants

All versions by default with mounting brackets and with stub shaft (modular design)

B: designed for higher pressure

T: designed for higher pressure with increased division accuracy

Max. speed: temporary 3500 rpm

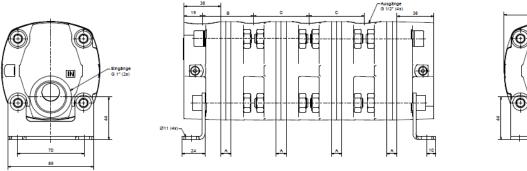
model	number of	max. inlet flow	displacement	max.	max.	max. pressure .	dim.	dim.	dim.
	sections	(dm ³ /min)	per section	pressure	pressure	diff. between	section	section	С
			(cm ³ /rev.)	continuous	intermittent	sections (bar)	А	В	(mm)
				(bar)	(bar)		(mm)	(mm)	
					for versions B	and T			
PM 203-59	4	36	2.5	210	320	110	8.0	39.8	36.6
PM 205-59	4	60	4.3	210	320	110	13.4	45.1	41.9
PM 207-59	4	80	5.6	210	320	110	17.2	49.0	45.8
PM 210-59	4	114	8.2	210	320	110	25.4	57.2	54.0

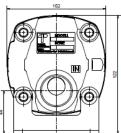
Ordering code:

model - variant

Example:

PM 203-59-B


Flow dividers with four equal sub-flows Series 300 PR


Variants

All versions by default with mounting brackets and with stub shaft (modular design)

S: designed for higher pressure

T: designed for higher pressure with increased division accuracy

Max. speed: temporary 3500 rpm

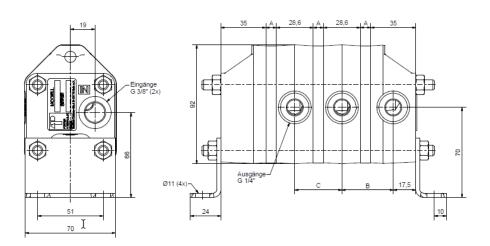
model	number of	max. inlet flow	displacement	max.	max. pressure	max. pressure .	dim.	dim.	dim.
	sections	(dm³/min)	per section	pressure	intermittent	diff. between	section	section	С
			(cm ³ /rev.)	continuous	(bar)	sections (bar)	А	В	(mm)
				(bar)			(mm)	(mm)	
					for versions S a	nd T			
PR 304-59	4	96	6.8	210	320	110	10.6	53.1	57.6
PR 307-59	4	160	11.7	210	320	110	18.2	60.7	65.2
PR 310-59	4	228	16.4	210	320	110	25.4	67.9	72.4
PR 312- 59	4	280	20.5	210	320	110	31.8	74.3	78.8
PR 315- 59	4	332	24.4	210	320	110	37.8	80.3	84.8

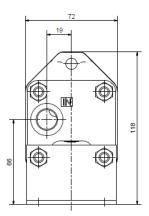
-					-
\cap	rd.	ori	00	00	de:
U		еп	по	CO	ue.
~		•••	· · · •	~~	

model - variant

Example:

PR 304-59-S


Flow dividers for several equal or proportional sub-flows Series 200 PM


Variants

All versions by default with mounting brackets and with stub shaft (modular design)

B: designed for higher pressure

T: designed for higher pressure with increased division accuracy

Max. speed: temporary 3500 rpm

model	section label	max. inlet flow	displacement	max.	max.	max. pressure .	dim.	dim.	dim.
		per section	per section	pressure	pressure	diff. between			С
		(dm ³ /min)	(cm ³ /rev.)	continuous	intermittent	sections (bar)	А	В	off three-way
				(bar)	(bar)		(mm)	(mm)	(mm)
				fo	or versions B	and T			
PM 201	201	4	1.1	210	320	175	3.6	35.4	32.2
PM 202	202	6.5	1.9	210	320	175	5.8	37.6	34.4
PM 203	203	9	2.5	210	320	110	8.0	39.8	36.6
PM 204	204	11.5	3.3	210	320	110	10.2	42.0	38.8
PM 205	205	15	4.3	210	320	110	13.4	45.1	41.9
PM 207	207	20	5.6	210	320	110	17.2	49.0	45.8
PM 210	210	28.5	8.2	210	320	110	25.4	57.2	54.0

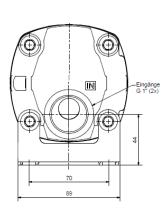
The chambers can be combined with each other as desired!

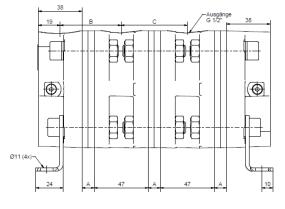
number of sections	3	4	5	6	7	8
identification of section	60	59	58	57	56	55

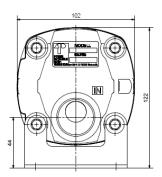
Ordering code equal sub flows : Example: model – identification of section – variant PM 203-60-B

Ordering code proportional sub flows (up to 8): model – last digit of the respective chamber – variant

Example: PM 202 - 3 - 7 - 0 - ... - T




Flow dividers for several equal or proportional sub-flows Series 300 PR


Variants

All versions by default with mounting brackets and with stub shaft (modular design)

- S: designed for higher pressure
- T: designed for higher pressure with increased division accuracy

Max. speed: temporary 3500 rpm

model	section label	max. inlet flow	displacement	max.	max.	max. pressure .	dim.	dim.	dim.
		per section	per section	pressure	pressure	diff. between	А	В	С
		(dm³/min)	(cm ³ /rev.)	continuous	intermittent	sections (bar)	(mm)	(mm)	off three-way
				(bar)	(bar)				(mm)
				1	for versions S	and T			
PR 304	304	24	6.8	210	320	110	10.6	53.1	57.6
PR 307	307	40	11.7	210	320	110	18.2	60.7	65.2
PR 310	310	57	16.4	210	320	110	25.4	67.9	72.4
PR 312	312	70	20.5	210	320	110	31.8	74.3	78.8
PR 315	315	83	24.4	210	320	110	37.8	80.3	84.8

The chambers can be combined with each other as desired

number of sections	3	4	5	6	7*	8*
identification of section	60	59	58	57	56	55

* beginning from 7-fold division max. continuous pressure = 150 bar

Ordering code equal sub flows :	model – identification of section – variant
Example:	PR 304-60-S

Ordering code proportional sub flows (up to 8):

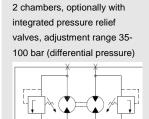
model – last digit of the respective chamber – variant

Example: PR 307 – 4 – 5 – 0 - ... - T

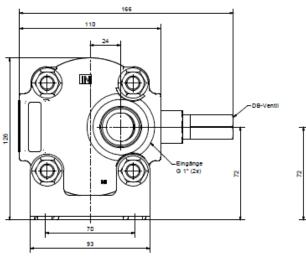
For devices with 2 sub flows the last two digits of the respective chamber are named Example: PR 304 - 07 - T

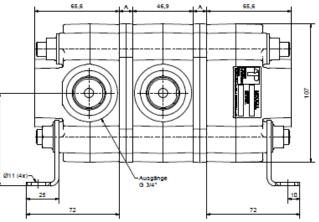
High pressure flow dividers for several equal or proportional sub-flows

Series 300 - H: without integrated pressure relief valves


Series 300 - HR: with integrated pressure relief valves

Variants


All versions of high pressure series by default with mounting brackets


S: standard

T: with increased division accuracy

hydraulic diagram:

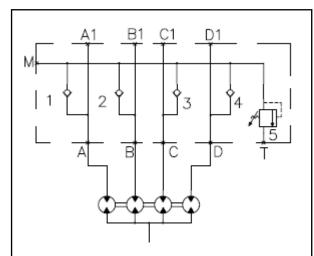
Max. speed: temporary 3500 rpm

(dm³/min) (cm³/rev.) (bar H/HR 304 304 24 6.8 240 H/HR 307 307 40 11.7 240 H/HR 310 310 57 16.4 240 H/HR 312 312 70 20.5 240 H/HR 315 315 83 24.4 240 The chambers can be combined with each other as desired! 100 59 58 Ordering code for 2 equal sub flows: model – last digit 100 100	
H/HR 304 304 24 6.8 240 H/HR 307 307 40 11.7 240 H/HR 310 310 57 16.4 240 H/HR 312 312 70 20.5 240 H/HR 315 315 83 24.4 240 he chambers can be combined with each other as desired! 100 100 100 100 number of sections 3 4 5 100 100 100 100 100 Ordering code for 2 equal sub flows: model – last digit 100	for versions S and T 240 420 210 10.6 240 420 210 18.2 240 420 210 18.2 240 420 210 31.8 240 420 210 31.8 240 420 210 35.4 5 6 7 8 58 57 56 55
H/HR 307 307 40 11.7 240 H/HR 310 310 57 16.4 240 H/HR 312 312 70 20.5 240 H/HR 315 315 83 24.4 240 he chambers can be combined with each other as desired! 10 59 58 Ordering code for 2 equal sub flows: model – last digit 10 10	240 420 210 10.6 240 420 210 18.2 240 420 210 18.2 240 420 210 25.4 240 420 210 31.8 240 420 210 37.8 5 6 7 8 58 57 56 55
H/HR 307 307 40 11.7 240 H/HR 310 310 57 16.4 240 H/HR 312 312 70 20.5 240 H/HR 315 315 83 24.4 240 he chambers can be combined with each other as desired! 10 58 58 Ordering code for 2 equal sub flows: model – last digit model – last digit	240 420 210 18.2 240 420 210 18.2 240 420 210 25.4 240 420 210 31.8 240 420 210 37.8 5 6 7 8 58 57 56 55
H/HR 310 310 57 16.4 240 H/HR 312 312 70 20.5 240 H/HR 315 315 83 24.4 240 H/HR 315 315 83 24.4 240 he chambers can be combined with each other as desired! 100 100 100 100 number of sections 3 4 5 100 100 100 100 100 of entification of section 60 59 58 100 10	240 420 210 25.4 240 420 210 31.8 240 420 210 37.8 5 6 7 8 58 57 56 55
H/HR 312 312 70 20.5 240 H/HR 315 315 83 24.4 240 he chambers can be combined with each other as desired! number of sections 3 4 5 identification of section 60 59 58 58 Ordering code for 2 equal sub flows: model – last digit 1 1	240 420 210 31.8 240 420 210 37.8 5 6 7 8 58 57 56 55
H/HR 315 315 83 24.4 240 he chambers can be combined with each other as desired! number of sections 3 4 5 identification of section 60 59 58 Ordering code for 2 equal sub flows: model – last digit	240 420 210 37.8 5 6 7 8 58 57 56 55
he chambers can be combined with each other as desired! number of sections 3 4 5 identification of section 60 59 58 Ordering code for 2 equal sub flows: model – last digit	5 6 7 8 58 57 56 55
number of sections 3 4 5 identification of section 60 59 58 Ordering code for 2 equal sub flows: model – last digit	58 57 56 55
identification of section605958Ordering code for 2 equal sub flows:model – last digit	58 57 56 55
section 60 59 58 Ordering code for 2 equal sub flows: model – last digit	
	- last digit of the respective chamber – variant
	- last digit of the respective chamber - variant
Example: HR 304 –	
	HR 30 <mark>4</mark> – <mark>4</mark> - S
Ordering code for 3 or more equal sub flows: model – i	model – identification of section – variant
	H 315 - 59 - S
Example: H 315 - 5	H 515 - 59 - 5

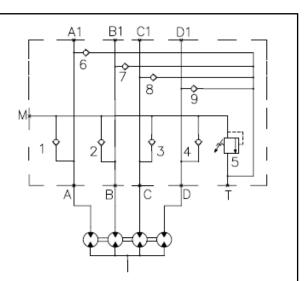
Pressure relief units -

Security in all cases

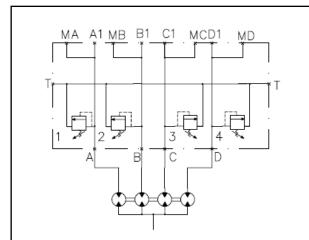
Due to their design, flow dividers by POWER-HYDRAULIK do not require additional pressure relief valves for final position equalization in many applications. If a cylinder has reached the final position, no more oil can flow on this side. The flow divider, in which all gears are located on the same shaft, keeps rotating slowly in order to bring the other cylinders into their final position. The pressure in the chamber of the cylinder which is already in the final position rises in this way.


In order to ensure that the maximum permissible pressure is neither exceeded in final position equalization nor in pressure intensification, pressure relief units by POWER-HYDRAULIK are used in many applications. Their task is to monitor and secure the application on the secondary side (on the load side after the flow divider). Consisting of an aluminum control block, check valves and pressure relief valves, the pressure relief units by POWER-HYDRAULIK work according to the principle of absolute safeguarding, i.e. the pressure relief valves open at a certain value and make the excess oil flow into the tank. The setpoint value is usually set on site during commissioning. On request we can also adjust the valves at our test rig.

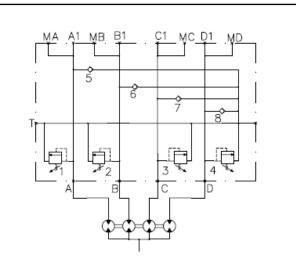
Normally the pressure relief units must be integrated into the pipe. For 2-section and 4-section flow dividers of Series 200 – PR, the pressure relief units can also be flange-mounted directly on the flow divider. If required, all pressure relief units are also available with anti-cavitation valves. These check valves prevent the formation of a vacuum in the respective pipe during the return flow by sucking oil from the tank.



Pressure relief units, integrated into the pipes


Pressure relief unit for Series 200, 4-section

Consists of an aluminum control block; each sub-flow is secured by a check valve and a pressure relief valve. In 2-section devices each sub-flow is secured by a pressure relief valve.


Pressure relief unit with anti-cavitation valves for Series 200, 4-section

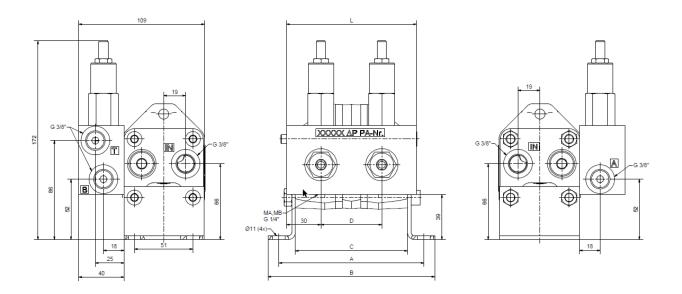
Consists of an aluminum control block; each sub-flow is secured by a check valve and a pressure relief valve, additionally with another check valve for cavitation protection. In 2section devices each sub-flow is secured by a pressure relief valve.

Pressure-relief unit for Series 300 and 400, 4-section (Series 400 only 2-section)

Consists of an aluminum control block; each sub-flow is secured by a pressure relief valve.

Pressure-relief unit with anti-cavitation valves for Series 300 and 400, 4-section (Series 400 only 2-section)

Consists of an aluminum control block; each sub-flow is secured by a pressure relief valve, additionally with further check valves for cavitation protection.


Pressure relief unit – flange-mounted Series 200 PR – with 2 equal sub flows

Variants

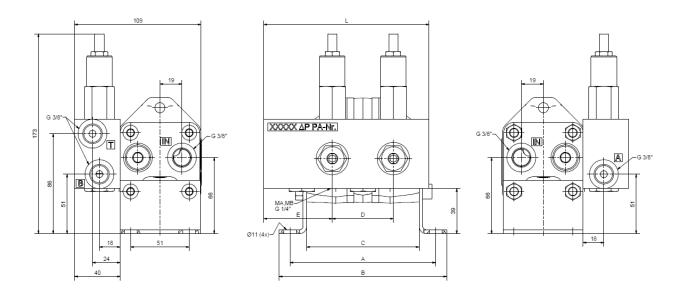
All versions by default with mounting brackets

B: designed for higher pressure

T: designed for higher pressure with increased division accuracy

flow divider	dim. A +-2	dim. B +-2	dim. C	dim. D	dim. L
model	(mm)	(mm)	(mm)	(mm)	(mm)
PR 202	126	145	97.4	53	113
PR 204	135	154	106.1	61.5	121
PR 207	149	168	120.1	75.5	135

Please state in your query/order whether a pressure relief unit is required. Our team will gladly assist you.


Pressure relief unit with anti cavitation protection – flange-mounted Series 200 PR – with 2 equal sub flows

Variants

All versions by default with mounting brackets

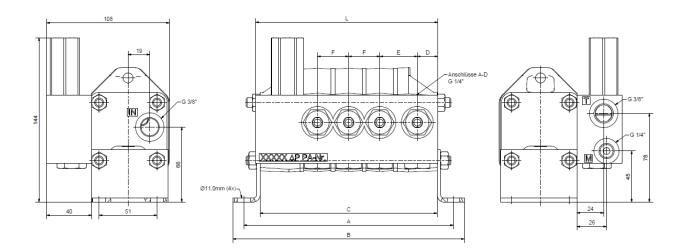
B: designed for higher pressure

T: designed for higher pressure with increased division accuracy

flow divider model	dim. A +-2 (mm)	dim. B +-2 (mm)	dim. C (mm)	dim. D (mm)	dim. E (mm)	dim. L (mm)
PR 202	126	145	97.4	52.9	59.3	143
PR 204	135	154	106.1	61.5	59.3	152
PR 207	149	168	120.1	75.5	30	135

Please state in your query/order whether a pressure relief unit with anti cavitation protection is required.

Our team will gladly assist you.


Pressure relief unit – flange-mounted Series 200 PR – with 4 equal sub flows

Variants

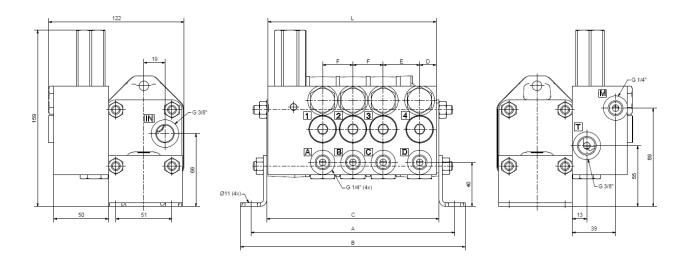
All versions by default with mounting brackets

B: designed for higher pressure

T: designed for higher pressure with increased division accuracy

flow divider	dim. A +-2	dim. B +-2	dim. C	dim. D	Dim. E	Dim. F	Dim. L
model	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PR 201-59	184	203	155	15	32.9	27.4	152
PR 202-59	193	213	165	18	35.2	29.7	162
PR 204-59	211	231	183	16	39.5	34.0	165

Please state in your query/order whether a pressure relief unit is required. Our team will gladly assist you


Pressure relief unit with anti cavitation protection – flange-mounted Series 200 PR – with 4 equal sub flows

Variants

All versions by default with mounting brackets

B: designed for higher pressure

T: designed for higher pressure with increased division accuracy

flow divider	dim. A +-2	dim. B +-2	dim. C	dim. D	dim. E	dim. F	dim. L
model	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PR 201-59	184	203	155	15	32.9	27.4	152
PR 202-59	193	213	165	18	35.2	29.7	162
PR 204-59	211	231	183	16	39.5	34.0	165

Please state in your query/order whether a pressure relief unit with anti cavitation protection is required.

Our team will gladly assist you.

Quick search

Liters	Chambers	Model	Displacement	rpm
10	2	PR 204	3,3	1515
	3	PM 202-60	1,9	1760
	4	PR 201-59	1,1	2280
	5	PM 201-58	1,1	1820
	6	PM 201-57	1,1	1520
	7	PM 201-56	1,1	1300
	8	PM 201-55	1,1	1140
15	2	PR 204	3,3	2270
	3	PM 203-60	2,5	2000
	4	PR 202-59	1,9	1980
	5	PM 202-58	1,9	1578
	6	PM 201-57	1,1	2280
	7	PM 201-56	1,1	1950
	8	PM 201-55	1,1	1710
20	2	PR 207	5,6	1790
	3	PM 204-60	3,3	2020
	4	PR 204-59	3,3	1515
	5	PM 202-58	1,9	2110
	6	PM 202-57	1,9	1760
	7	PM 202-57 PM 201-56	1,5	2600
			,	
20	8	PM 201-55	1,1	2280
30	2	PM 210-0	8,2	1893
	3	PM 205-60	4,3	2330
	4	PR 204-59	3,3	2272
	5	PM 203-58	2,5	2400
	6	PM 203-57	2,5	2000
	7	PM 202-56	1,9	2260
	8	PM 202-55	1,9	1980
40	2	PR 307	11,7	1710
	3	PM 207-60	5,6	2380
	4	PM 205-59	4,3	2330
	5	PM 205-58	4,3	1860
	6	PM 204-57	3,3	2020
	7	PM 203-56	2,5	2290
	8	PM 203-55	2,5	2000
50	2	PR 307	11,7	2140
	3	PM 210-60	8,2	2032
	4	PM 210-59	8,2	1524
	5	PM 205-58	4,3	2330
	6	PM 205-57	4,3	1937
	7	PM 204-56	3,3	2164
	8	PM 204-55	3,3	1893
60	2	PR 310	16,4	1829
	3	PR 307-60	11,7	1709
	4	PR 304-59	6,8	2205
	5	PM 207-58	5,6	2142
	6	PM 205-57	4,3	2330
	7	PM 205-56	4,3	1993
	8	PM 204-55	3,3	2272
80	2	PR 310	16,4	2440
	3	PR 307-60	11,7	2280
	4	PR 307-59	11,7	1709
	5	PM 210-58	8,2	1951
	6	PM 207-57	5,6	2380
	7	PM 207-56	5,6	2000
	8	PM 205-55	4,3	2330
100	2	PR 315	24,4	2050
	3	PR 310-60	16,4	2032
	4	PR 307-59	11,7	2140
	5	PR 307-58	11,7	1709
	6	PR 304-57	6,8	2450
	7	PM 210-56	8,2	1742
	8	PM 207-55	5,6	2232

Liters	Chambers	Model	Displacement	rpm	
125	2	PR 411	38,6	1619	
	3	PR 312-60	20,5	2032	
	4	PR 310-59	16,4	1905	
	5	PR 307-58	11,7	2140	
	6	PR 307-57	11,7	1780	
	7	PR 307-56	11,7	1526	
	8	PR 304-55	6,8	2297	
150	2	PR 411	38,6	1950	
	3	PR 312-60	20,5	2440	
	4	PR 310-59	16,4	2290	
	5	PR 310-58	16,4	1829	
	6	PR 307-57	11,7	2140	
	7	PR 307-56	11,7	1831	
	8	PM 210-55	8,2	2286	
175	2	PR 411	38,6	2270	
	3	PR 315-60	24,4	2390	
	4	PR 312-59	20,5	2134	
	5	PR 310-58	16,4	2134	
	6	PR 310-57	16,4	1778	
	7	PR 307-56	11,7	2140	
	8	PR 307-55	11,7	1869	
200	2	PR 411	38.6	2590	
200	4	PR 315-59	24,4	2049	
	5	PR 312-58	20,5	1951	
	6	PR 310-57	16,4	2032	
	7	PR 310-56	16,4	1742	
	8	PR 307-55	11,7	2140	
225	2	PR 418	64	1757	
225	4	PR 315-59	24,4	2305	
	5	PR 312-58	20,5	2195	
	6	PR 310-57	16,4	2290	
	7	PR 310-56	16,4	1959	
	8	PR 310-55	16,4	1714	
250	2	PR 418	64	1960	
230	4	PR 315-59	24,4	2570	
	5	PR 315-58	24,4	2049	
	6	PR 312-57	20,5	2043	
	7	PR 310-56	16,4	2180	
	8	PR 310-55	16,4	1905	
300	2	PR 418	64	2350	
000	5	PR 315-58	24,4	2459	
	6	PR 315-57	24,4	2049	
	7	PR 312-56	20,5	2049	
	8	PR 310-55	16,4	2030	
350	6	PR 310-55 PR 315-57	24,4	2290	
550	7	PR 315-57 PR 315-56			
	8	PR 315-56 PR 312-55	24,4	2049 2134	
400	7		20,5 24,4		
400	/	PR 315-56 PR 315-55	24,4	2341	

The stated data are exclusively intended to describe examples of speed and must not be understood as guaranteed features in the legal sense.

Please do not hesitate to contact us in case of questions.

Please note the "Einbau- und Betriebshinweise", link on page 5!

Agencies abroad

Finland:

Masino-Konaflex Oy Pyymosantie 4 FI-01720 Vantaa, Finland T +358 (0)10 8345 500 power.hydraulics@masino.fi www.masino.fi

Italy

Nordfluid S.p.A. Via Keplero, 24 IT-20019 Settimo Milanese (MI) T +39.02.3397941 info@nordfluid.it www.nordfluid.it

Spain

A.R. Sistemas Parc Tecnológic del Vallés Ronda Can Fatjó, No. 19A E-08290 Cerdanyola del Vallés (Barcelona) T +34 93-675 25 05 ar@arsistemas.net www.arsistemas.net

China

Shanghai ZhenJun Mould Technology Co. Ltd Add: Room 301, No. 32 Tie Ling Road YangPu District CN-200092 Shanghai T +86 21 33 77 68 80 zhenjunmould@163.com

POWER-HYDRAULIK GmbH Gottlieb-Daimler-Straße 4 72172 Sulz T +49 7454 9584-0 power@power-hydraulik.de www.power-hydraulik.de